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Moscow, USSR 

Received 29 July 1986 

Abstract, Exactly solvable generalisations of the Jaynes-Cummings model are considered 
which are non-linear both in bosonic and spin variables. Exact wavefunctions and energy 
levels are found for the corresponding systems. 

1. Introduction 

Studies of the quantum model of interaction of a ( 2 r +  1)-level atom, spin s = r, with 
a radiation resonance field were initiated by Jaynes and Cummings (1963), who first 
succeeded in obtaining an exact solution to a Dicke model with the value of r = t. 
Subsequently, various versions of multiboson processes were studied in two-level atoms. 
In particular, Buck and Sukumar (1981a, b, 1984a) have found an exact solution to 
the equations of motion for an atomic system with the interaction non-linear in bosonic 
variables. From a physical point of view, a distinctive feature of the Jaynes-Cummings 
model and its multiboson modifications is the periodic reproduction of atomic energy 
oscillations due to the initial coherent pumping, observed for the first time by Eberly 
et a1 (1981). 

In  this paper, exactly solvable generalisations of the Jaynes-Cummings model 
which are non-linear in bosonic and spin variables are considered. Owing to the 
conservation laws, the state space of a system can be decomposed into a direct sum 
of finite-dimensional subspaces corresponding to fixed values of constants of motion. 
An eigenstate vector of a system parametrised by a fixed set of these constants is 
determined as an expansion over the basis of an appropriate finite-dimensional sub- 
space and the expansion coefficients are defined from the Schrodinger equation that 
is reduced on every subspace to a finite system of algebraic equations. 

In 0 2 a multiboson variant of the one-mode Jaynes-Cummings model is formulated; 
the structure of state space is thoroughly analysed, and exact wavefunctions and energy 
levels of a system are found. In 0 3 the same is done for a two-mode version of the 
Jaynes-Cummings non-linear problem and the completeness of the system of eigenfunc- 
tions obtained is discussed. Section 4 is devoted to the consideration of interactions 
that are non-linear both in bosonic and spin variables. 
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2. The one-mode non-linear Jaynes-Cummings problem 

Consider the Hamiltonian 

2 = w~ + U + w0s3 + A ( U  + ) k ~  ?(U+U )s+ + ,if( U +U )( U +) 'U  's- (1) 

describing the interaction of an atomic system with ( 2 r +  1) equidistant levels with a 
one-mode radiation field a :  [a ,  a'] = 1. Generators S of a (2r + 1)-dimensional rep- 
resentation of the SU(2) group obey the relations [ S , ,  s,] = *S,, [ S + ,  s-] = 2S3  where 
the operators S, = S ,  * is, increase (decrease) the energy of an atom by OJ". As is seen 
from ( l ) ,  transitions between neighbouring levels proceed through the emission of I 
or k phonons and absorption of k or 1 phonons, and the intensity of interaction 
Af(u+a) depends on the intensity of a phonon field by the function f satisfying the 
condition f ( a ' a ) ! n ) = f ( n ) l n )  where a ' a / n ) = n ( n ) .  Model (1) at k = 0 ,  I=1 ,  f = l ,  
r = f reduces to the Jaynes-Cummings problem whose exact solution has been known 
since 1963 (Jaynes and Cummings 1963, Rupasov 1982, Lee 1973). 

2.1. The structure of srute space 

The state space of system (1) is generated by a basis {Id:) = I n)l m): n 3 0,  - r  m G r }  
wher! S,[m)= mlm). Conservation of the charge of a system N = u+a + ( I -  k ) S 3 ,  
[ X, N I  = 0 limits the range of variation of n a?d m by the condition N = n + ( I  - k ) m ,  
where N is an eigenvalue of the operator N. In this way, the state space can be 
represented by X@ XN, where every subspace XN corresponding to a particular value 
of the charge N is generated by the basis 

{ 1 4 , N ) = I N - ( l - k ) m ) l m ) }  fil+")= N I 4 3  ( 2 )  

where m (at I >  k )  and -m (at I <  k )  vary from - r  to min(r, m,,,) and mmaX is defined 
from the conditions 

m m a x ~ { - r + p P , p = O ,  1 ,2 , .  . .} 

with the dimensionality of a subspace X N  

dim X N  = 1 + r + min( r, m,,,), 

The charge eigenvalues take the values 

N = n - 11 - k / r ;  n 3 0.  (3) 

As a result, mmax = [ n / l l -  k l ]  - r, where [ x ]  is the integer part of x and 

At 1 = k the dimensionality of any subspace X N  is 2 r +  1. Let 1 > k for definiteness; 
then the vector I I / I L N )  obeying the Schrodinger equation 

XI+) = %I$) ( 5 )  

fiII/I", = 

with Hamiltonian (1) and corresponding to the charge eigenvalue N 
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can be represented by the following expansion over the basis of subspace XN ( 2 ) :  

where 

rii = min(r, m,,,) = *in( r, ['I - r ) .  
II-kl 

(7)  

2.2. Energy levels and eigenfunctions at r = 

Consider the Hamiltonian (1) at r = f and 1 > k. Eigenvalues of the operator fi take 
the values N = n - ( 1  - k ) / 2 ;  n 5 0, according to (3). Expansion ( 6 )  in this case is as 
follows: 

(8)  

or 

I$,) = (1 + a2)-1 '2( ln) l  - f)+ aln - I +  k ) l f ) )  

I$,)= I n ) / - $ )  0 s  n < I - k  

n s l - k  

where a is a parameter expressed through E, and defined by equation ( 5 ) .  Inserting 
(8)  into the Schrodinger equation ( 5 )  we obtain the following solutions. 

For n s I :  

where 

n !  ( n  - I +  k ) !  
( n  - I ) ! (  n - I ) !  4 k l  = 

and 

For I - k s n < l :  

if!,+) = wn - w O / 2  if !,- ) = w ( n - I + k ) + W O /  2.  

Finally, for 0 s n < 1 - k we obtain 



2436 E A Kochetov 

From (9a) - (  1 l a )  it follows that dim % N , n 3 1 - L  = 2, dim XN,"- = 1 in full correspon- 
dence with the general formula (4) if r = f .  The case k > I ,  k = I is treated in an 
analogous manner. 

Formulae (9)-( 11) at f =  1, k = 0, I = 1 become the results of the standard Jaynes- 
Cummings model. Expressions obtained by Buck and  Sukumar (1981a) for various 
averages of the energy operator of an atomic system S,(t)  = e'*'S,(O) e-'*' follow from 
the above formulae if one sets f ( x )  = v'x, k = 0, I = 1. Note also that for f =  1, k = 0 
and an arbitrary I ,  Buck and  Sukumar (1981b) have found squares of normal modes 
of oscillations of an atomic system w t  = (8:' - 8;- ')I which are shown to represent 
eigenvalues of the squared frequency operator A' in the equation S3 + A'S3 = A( t 1. 
Using formulae (9b)-( 11 b)  we arrive at the results obtained by Buck and Sukumar 
(1981b). 

3. The two-mode non-linear Jaynes-Cummings problem 

Now consider a generalisation of the Jaynes-Cummings model to the case of the 
interaction of a (2 r+  1)-level system with a two-mode field a, b :  

X =  w l a + a  + q b ' b  + wOS3+Aa'(  b')'S++ A(a+)'bkS-. (12) 

This model possesses two independent constants of motion: 

G = a ' a + l S ,  M = b b + b - k S 3 .  

The space state of system (12) is generated by a set {14:p) = 1n)ip)Im); n, p 2 0,  - r  S 
m G r }  where a+aln)  = n l n ) ,  b'blp) = p i p ) ,  S,lm) = mlm). Owing to the conservation 
laws, N = n + lm and M = p - km where N and M are common eigenvalues of charges 
fi and M. Every subspace 2N,M corresponding to fixed values of the charges is 
generated by the basis 

It may be verified that feasible common eigenvalues of charges form the sets 

{ N = n - l r , M = p + k r ; n , p 2 0 }  { N = n + I r ,  M = p - k r ;  n , p z O } .  

The dimensionality of subspace can be established (cf 9 2): 

dim XN, = 1 + r + min{ r, [ n / I ]  - r }  

dim XN," = 1 + r + min{ r, [ p /  k ]  - r }  M = p  - kr < kr 

and the expansion can be written for the solution to the Schrodinger equation ( 5 )  
corresponding to the eigenvalues of charges N and M over the basis (13): 

N = n - I r  M = p + k r  

N = n + l r  
(14) 

where 

fil = min{ r, [ n /  I ]  - r }  A2 = min{ r, [ p /  k ]  - r }  I ,  k # 0 .  
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3.1. Energy leuels and eigenfunctions at r = f 

At r = + expansion ( 1 5 )  assumes the form 

) = I $ n p )  = ( 1  + a2)- ’  ”(1n)I p ) (  -4) + (Y In - I ? (  p + k ) / i ) )  1 N = n - 1 1 2 ,  bl = p+ h / 2  

(16) 
n 2 1, p 2 0 

n < l , p a O  
(17)  

Inserting (16) and ( 1 7 )  into the Schrodinger equation (5) we obtain the following results. 

14np)=ln)lP)l-+) 

) = l4np)  = InY P ) l t )  n 2 0,  p < k. 1 + N = n + I /  2 ,  M = p - A / 2 c h /  2 

( i )  When n z l  and p 3 0  

( i i )  For n < 1 and p 3 0  

8,,,, = w , n  + w 2 p  - w0/2. 

(iii) F o r p < k  and n s O  

$?,,=w,n+w,p+w0/2. 

From (18a)-(20a) 

n ! ( p + k ) !  
( n - / ) ! p !  CrIp  = 

dim 2 N . M  = 2 N = n - 1/2 M = p + k / 2  n 3 1 , p s O  

dim XN,,w = 1 N = n - 1 / 2  M = p + k / 2  n<l ,p*O 

dim X N , M  = 1 N = n + 1 / 2  M = p - k / 2  p < k , n 2 0  

in full accordance with the general formula ( 1 4 )  if one sets r = there. 

3.2. Completeness of the system of eigenfunctions 

Let us verify the completeness of the system of functions ( 1 8 a ) - ( 2 0 a ) .  Composing 
the operator Z f l r  l $ , ) ( $ i l  we obtain a 2 x 2 matrix 
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where, for instance, 

Owing to the relationship 

Analogously, a,, = 1, a12 = a2! = 0. In a similar way, completeness is proved for the 
system of functions (sa ) - (  1 l a ) .  

4. Generalisations of the Jaynes-Cummings model non-linear in spin and 
bosonic variables 

Consider a generalisation of the Jaynes-Cummings model non-linear in spin and 
bosonic variables: 

where r and s are positive integers or half-integers and S31m) = mim),  -s S m zz s. The 
Hamiltonian X( r = f ;  s = i) = wa+a +U&+ AaS+ + Aa'S- is a standard Jaynes- 
Cummings Hamiltonian and X( r = i; s = 1) represents a Jaynes-Cummings problem 
for a three-level atom. Exact results for the Hamiltonians X( r = f ,  s = 1) and X( r = 
j , s = $ )  are given in Buck and Sukumar (1984b) and Sentitzky (1971). Due to the 
relations (S+)'*+'  = (S-)2r+l = 0, X(r; s S r )  = X ( s ;  s). On the other hand, X ( r ;  s > r )  
can be treated as X ( s ;  s), where A, = 0 for j >  2r.  So it suffices to consider the 
Hamiltonian X( r ;  s = r )  = Xr. 

4.1. Structure of the state space 

The Hamiltonian Xr commutes with the charge operator fi = a+a  + S3,  the form of 
which coincides with (2) at k = 0, I = 1. Using the results of Q 2 we obtain the system 
of bases of the subspace ( X,)N with a distinguished charge: 

{l4:)=lN-"dl f i I43 = N I 4 3  ( 2 2 )  
where N runs over the sequence N = n - r ;  n 2 0. Formula (4) reduces to 

(23) 

The solution to the Schrodinger equation It,bN) with Hamiltonian X, belonging to the 
subspace (Xr), can be represented by 

dim( X,)N = 1 + r + min( r ;  n - r ) .  

r + m i n l r . n - r )  

IV)= ,=0 c ff,Idc+,) 

where the expansion coefficients a, are defined by ( 5 ) .  
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4.2. Wavefunctions a n d  energy levels of the Hamilronian X, 
According to (21) 

X, zz X( 1;  1) = wa+a + w,S,+ A,aS,+ h , a + S -  + (A2/2!)(aS,)’+ ( A 2 / 2 ! ) ( a + S - ) ’  

S3lm) = m l m )  m =0 ,  * l .  (25)  

The model Hamiltonian (25) describes a three-level atom interacting with a one-mode 
radiation field; transitions between neighbouring levels are realised by a one-boson 
exchange whereas between two extreme ones they are by two-boson processes. The 
intensity of the transitions is different and  is determined by the coupling constants A ,  
and  A 2 .  

l q ! ~ ~ = ~ - ’ ) =  I+,)= (1+a:+at ) -” ’ ( ln) l -  I ) + a , l n  - 1)/0)+a, ln  -2)Il)) n 3 2  (26)  

Expansion (24) at r = 1 is 

l q ! I n = l ) =  (1  +a2)-1’2(11)1-l)+a10)10)) (27) 

l+n=o) = l0)l- 1). 

Inserting (26) into ( 5 ) ,  making 
w = U,, we obtain 

a1 = 

8 = w(n - l ) +  y 

A i A 2  + A I Y  
2A:+ nyAz 

where y obeys the equation 

(28) 

the change a,+&a, ,  a 2 + m a 2  and setting 

ny-2A: 
( n  - 1)(2A:+ nyA2) 

a2 = 

ny3-y(2A:(2n-1)+n(n  -l)A:)-4A:A2(n-1)=0 

the solution of which is given by 
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Formulae (30)-(34) represent the solution to problem (25). Now we consider two 
important particular cases. 

(i) Let A I  = O .  Then for n z 2  from (31) it follows that 

y z =  -4A:/Azn+o(A:) yl,,=*A,[(n - l ) / n ] ” 2 + ~ ( l )  A 1 + O  

and  for the state vector and  energy levels of a system we obtain from (29) and (30) 

gn = w (  n - 1). 

Hereafter the representation 

‘2) 0 

is used; l$‘j*)) and 8\*) at A ,  = O  are given by (33). At n = O  the solution is defined 

(ii) Let A,  = 0, which corresponds to the standard Jaynes-Cummings model for a 
by (34). 

three-level atom. 
For n 3 2  

which upon substituting into (29) and (30) gives 

(36b 1 Z f F ’ = w n - w * A l [ 2 ( 2 n - 1 ) ] 1 ’ 2  8, = wn - w .  

At n = 1 and n = O  we make use of formulae (32) and (341, respectively. 
From the general formula (23) we conclude that 

n 3 2  
dim %,,;,-, = 2 [I ;I: 

which is in full correspondence with the results obtained above. On the basis of the 
spectrum (326), (346) and (366) for system (25) with A2=0  we can obtain the same 
expressions for the characteristic parameters of an atomic system in the resonance 
case, as Buck and Sukumar (1984b) have done. The completeness of the system of 
functions (33a)-(35a) and  ( 3 2 ~ 1 ,  (34a) and (36a) can be easily verified. 
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4.3. Other models with non-linear interaction 

The Hamiltonian 

where k and n are natural numbers, S,lm) = mlm) ,  - r S  m S r and [XI is the integer 
part of x, is an immediate generalisation of the Hamiltonian 2,. Indeed, Zr = % ! = ' ' = I .  

The interaction X:." is associated with a conserved charge I? = a f a  + ( k / n ) S , ,  
[X, fl] = 0, which allows us to apply the above method of constructing solutions of 
the Schrodinger equations, corresponding to definite eigenvalues, to the Hamiltonian 
(37). 

In particular, for the simplest Hamiltonian (37) 

%?FZ:.n=2 = wa+a + woS, + AaS: + Aa'St fl = a + a  +is, 
we obtain for the energy levels, eigenvalues of the charge and dimensionalities of the 
corresponding subspaces 

8:' = o n  --+U i~ [($A - wo)2  +4A2n]"' N = n - i  dim 2'tN = 2 n z l  

dim X N = - , , 2  = 1 8n=0 = -wg N = - L  

8; = wn N = n  dim XN=, = 1 n SO. 

5. Conclusions 

The generalisations of the Jaynes-Cummings model we have considered represent the 
simplest solvable models that describe the essential physics of radiation-matter interac- 
tions. For instance, these models are capable of describing such interesting effects, 
now being intensively studied theoretically and experimentally, as vacuum-field Rabi 
oscillations, the revival and collapse of Rabi oscillations due to the coherent pumping 
and photon antibunching. Hamiltonians of type ( l ) ,  (12), (21) and (37) are essentially 
used for studying multiphoton processes in finite-level systems. In particular, the 
spectra we have obtained could be applied to study the behaviour of the photon 
statistics of multiphoton absorption and emission in a two-level atomic system (Shen 
1967, Agarwal 1970, Walls 1971, Zubairy and Yeh 1980, Voigt et a1 1980), two-photon 
and more general multiphoton lasers (McNeil and Walls 1975, Nayak and Mohanty 
1979, Reid er al 1981, Zubairy 1982) and Raman and hyper-Raman processes (Simaan 
1978, Sainz de 10s Terreros et a1 1985). As to other possible trends in studies based 
on the Jaynes-Cummings model, mention should be made of a recent series of papers 
(Agarwal and Puri 1986, Puri and Agarwal 1986) devoted to the generalisation of the 
Jaynes-Cummings model to include the effects of cavity damping. 
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